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Abstract 

The coefficient of variation is often used as a measure of precision in medical 
and biological sciences. When it is known a priori that several independent 
normal populations have equal coefficient of variations, procedures for 
constructing confidence intervals for the common coefficient of variation based 
on the concept of generalized variables had been discussed by other researchers. 
This paper makes use of the same concept applied to lognormal populations. 

1. The Lognormal Distribution 

A random variable is said to have the lognormal distribution if the 
logarithm of that variable has a normal distribution. A lognormal 
distribution results if the variable is the product of a large number of 
independent, identically-distributed variables in the same way that a 
normal distribution results if the variable is the sum of a large number of 
independent, identically distributed variables. A lognormal random 
variable X with parameters LL σµ ,  has the probability density function 
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The coefficient of variation (CV) of X equals ,1
2
−σLe  which depends on 

Lσ  only. Albeit less well known than the normal distribution the 

lognormal, nevertheless, appears everywhere in nature. Examples of 
quantities which have approximate lognormal distributions include the 
size of silver particles in a photographic emulsion, the survival time of 
bacteria in disinfectants, the weight and blood pressure of humans, and 
the number of words written in sentences by G. B. Shaw. In reliability 
analysis, the lognormal distribution is often used to model times to repair 
a maintainable system. 

The lognormal distribution also appears very frequently in clinical 
sciences. Altman & Martin [2] noted that relative risks and odds ratios 
are often analyzed on a logarithmic scale primarily because the 
transformations offer distributions, which are closer to normality. Thie et 
al. [12] stated in their meta-analysis of oncology investigations that 
numerous biological markers follow non-normal distributions and 
subsequently require a logarithmic transformation before further 
analysis. The distribution of the incubation periods for infectious and 
neoplastic diseases originating from point-source exposures and for 
genetic diseases follow a lognormal distribution, the so called Sartwell’s 
model. Uptake of radioactivity of a population of cells labelled with 

Po210  was also found to be well described by a lognormal distribution, 
see Neti & Howell [9]. 

2. The Coefficient of Variation 

The coefficient of variation (CV), which is the ratio of the standard 
deviation to the mean, is a dimensionless measure of dispersion found to 
be very useful in many situations. In chemical experiments, the CV is 
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often used as a yardstick of precision of measurements; two measurement 
methods may be compared on the basis of their respective CVs. In 
finance, the CV can be used as a measure of relative risks (Miller & 
Karson [8]) and a test of the equality of the CVs for two stocks can help 
determine if the two stocks possess the same risk or not. Hamer et al. [7] 
used the CV to assess homogeneity of bone test samples produced from a 
particular method to help assess the effect of external treatments, such 
as irradiation, on the properties of bones. Ahn [1] used the CV in the 
analysis of fault trees. The CV has also been employed by Gong & Li [6] 
in assessing the strength of ceramics. Sometimes, it might be easier to 
work with the reciprocal of the CV, denoted ICV. The ICV has special 
applications in parametric inference problems for some important 
lifetime distributions. Several methods for constructing the confidence 
interval of the lognormal mean are studied in Zhou & Gao [17] and 
Olsson [10]. However, apart from Pang et al. [11], who make use of 
MCMC simulation for the construction of confidence intervals for the 
lognormal mean, relatively little has been done in this area for the 
lognormal CV. Tian [13] is another one who uses simulation technique to 
develop inference procedures for the common CV based on independent 
normal samples. This paper follow her approach with independent 
normal samples replaced by lognormal samples. 

3. The Generalized Variable Approach 

3.1. Generalized p-value, generalized pivot and generalized 
confidence interval 

The generalized p-value was introduced by Tsui & Weerahandi [14] 
and the generalized confidence interval by Weerahandi [15]. When 
traditional interval estimation and hypothesis testing procedures do not 
exist, these concepts provide confidence intervals and p-values for 
hypothesis testing. To fix ideas, suppose that ( )nXXXX ,,, 21~ …=  is a 

random sample from a distribution which depends on a vector of 
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parameters ( ),, ~~ νψ=θ  where ψ  is the parameter of interest and ~ν  is a 

vector of ‘nuisance’ parameters. Suppose a confidence interval for ψ  is 

desired. Weerahandi [15] defines a generalized pivot ( )~~~ ,,, νψxXR  for 

this problem, where ~x  is an observed value of ,~X  as a random variable 

having the following two properties: 

(1) ( )~~~ ,,, νψxXR  has a distribution free of the vector of nuisance 

parameters ,~ν  

(2) The observed value of ( )~~~ ,,, νψxXR  is .ψ  

Suppose ( )αR  denotes the th-100α  percentile of the distribution of R. 

Then the ( )%1100 α−  two-sided generalized confidence interval for ψ  is 

given by ( ) ( )( ).21,2 α−α RR  To give a specific example, let us 

consider a random sample of size n from a normal population with mean 

µ  and variance .2σ  Let x  be the observed value of X  and 2s  be the 

observed value of .2S  It can easily be seen that the generalized pivot for 
the ICV ,: σµ=θ  given in Weerahandi [16], is 

,1:
n

Z
n

U
s
xXS

s
xR −

−
=

σ
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where ( ) ( )1,0~ NXnZ
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µ−=  and ( ) ( ).1~1 2
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−χ
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Obviously, the observed value of θR  is θ  and its distribution does 

not depend on nuisance parameters. Therefore, θR  is a generalized pivot 

for .θ  The corresponding generalized pivot for the ,,CV ψ  is .1: θψ = RR  

In accord with the previous notation, ( ).,~ σµ=ν  
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Next consider the testing problem 00 : ψ=ψH  vs .: 01 ψ<ψH  A 

generalized test variable ( )~~~ ,,, νψxXT  is a random variable that 

satisfies the following three conditions (Tsui & Weerahandi [14]): 

(1) For fixed ,~x  the distribution of ( )~~~ ,,, νψxXT  is free of the vector 

of nuisance parameters .~ν  

(2) The value of ( )~~~ ,,, νψxXT  at ~~ xX =  is free of .~ν  

(3) For fixed ~x  and ~ν  and for all [ ( ) ]txXTt ≥νψ ~~~ ,,,Pr,  is either 

an increasing function or a decreasing function of .ψ  

A generalized critical region is defined to be 

{ ( ) ( )},,,,or,,,: ~~~~~~~ νψ≤≥νψ xxTxXTX  

depending on whether ( )~~~ ,,, νψxXT  is stochastic increasing or 

decreasing in .ψ  The generalized p-value is then [ ( ) ≥νψ ~~~ ,,,Pr xXT  or 

( ) ].,,, 0~~~ ψνψ≤ xxT  If we want to test 00 : ψ=ψH  against 

,: 01 ψ<ψH  the generalized test variable would be ,ψ−= ψψ RT  

which obviously satisfies all three conditions. In the following, we will 
develop the generalized pivot and generalized test variable for the 
common CV from several independent populations. 

3.2. The proposed approach 

For k,,,2,1 …=i  let ψ  be the common population ix,CV  the 

observed value of iX  and 2
is  the observed value of 2

iS  both computed 

from a sample of size .in  The generalized pivot for ψ=θ 1:  is 
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The generalized pivot for ψ  based on the i-th sample would then be 

.1 ii RR θψ =  If populations are lognormal we have, asymptotically, 

( ) ( ),1,0~ NXnZ
i

iii
i σ

µ−
=  

and 

( ) ( )( ).12,1~1
2

2
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−
= ii
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If populations are normal, Feltz & Miller [4] has been proved that, 
asymptotically, 

( ) ( ),5.01var 221 +ψψ−=

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which is the formula used by Tian [13]. A similar asymptotic formula 
which works for normal and non-normal populations alike was later 
given by Curto & Pinto [3]: 

( ).5.0var 221 +ψψ=

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A reasonable generalized pivot ψR  for ψ  would then be a weighted 

average of the individual iRψ ’s, i.e., 
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using (2), since our populations are now lognormal, gives 
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It is easy to see that the value of ψR  at the observed value ( )ii sx ,  is ψ  

for k.,,2,1 …=i  Furthermore, the distribution of ψR  is independent of 

nuisance parameters. Therefore, ψR  is a generalized pivot for 

constructing confidence intervals of ψ  and its quantiles can be used to 

compute confidence limits. For example, the two-sided ( )%1100 α−  

confidence interval is given by 

( ) ( )( ),2/1,2/ α−α ψψ RR  (4) 

and the upper one-sided ( )%1100 α−  confidence interval is given by 

( )( ).1, α−∞− ψR  (5) 

These confidence limits depend on the sampling distribution of ( )ii SX ,  

which, in turn, depends on the parameters ( )., ii σµ  It is therefore not 

possible to evaluate the performance of these confidence intervals by 
analytic methods and simulation has to be used. 

The generalized p-value for testing 00 : ψ≥ψH  vs 01 : ψ<ψH  is 

given by 

( ) ( ).0 00 ψ≤=ψ=ψ≤ ψψ RPTP  

Similarly, the generalized p-value for testing 00 : ψ≤ψH  vs 01 : ψ>ψH  

is given by 

( ) ( ).0 00 ψ≥=ψ=ψ≥ ψψ RPTP  

Finally, for testing 00 : ψ=ψH  vs ,: 01 ψ≠ψH  it is 

( ) ( )[ ].,min2 00 ψ≥ψ≤ ψψ RPRP  
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3.3. Simulation algorithm 

For a given data set { }ijx  where ( )k11=i  and ( ) ,11 inj =  the 

generalized confidence intervals and the generalized p-values can be 
computed by the following steps: 

1. For ( ) ,11 k=i  compute ix  and .2
is  

2. Generate ( )1,0~ NZi  and ( )( ).12,1~ −− iii nnNU  

3. Compute iRψ  for ( )k11=i  using (1) and then ψR  using (3). 

4. Repeat steps 2 and 3 m times to obtain an array of ψR ’s. 

5. Arrange this array in ascending order to obtain a new array .ψA  

To construct confidence intervals, we make use of (4) and (5) and 
estimate ( )αψR  by the th-100α  smallest entry of .ψA  

4. Simulation Study 

A simulation program written in R is used to evaluate the coverage 
probabilities of the proposed confidence intervals and type-I error control 
of the proposed tests. The CV rarely exceeds 0.50 for most medical and 
biological studies. Following Fung & Tsang [5] and Tian [13], the common 
lognormal CV is chosen to be 0.05, 0.10, 0.15, 0.20, 0.30, 0.40, and 0.50. 
Three or five samples with sample sizes 10, 20, 30, 40, and 50 are 

considered. Since the lognormal CV, which equals ( ) ,1exp 2 −σL  is 

independent of ,Lµ  all populations are given the same value of Lµ  to 

simplify matters. We take the CV to be 0.05, 0.10, 0.15, 0.20, 0.30, 0.40, 
and 0.50. For each ( )LL σµ ,  combination, 5000 random samples are 

generated. With each of these 5000 random samples, 2500 ψR ’s are 

simulated by the algorithm in Subsection 3.3. Generalized confidence 
intervals are constructed with a 95% confidence level. 
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To facilitate comparison with Tian’s [13] results, Table I presents the 
coverage probabilities of one-sided and two-sided confidence intervals for 
selected normal populations. The coverage probabilities of the proposed 
confidence intervals are reasonably close to the nominal level regardless 
of the sample sizes, the number of samples and the value of the common 
CV. These results agree well with those of Tian’s. 

Table I. Empirical coverage probabilities and average length of 
approximate 95% two-sided confidence intervals and empirical coverage 
probabilities of 95% lower one-sided confidence intervals based on 5000 
normal samples 

Sample size 

  10   20   30  

C. V. CV  Length CV  CV  Length CV  CV  Length CV  

3 samples          

0.05 0.954 0.033 0.983 0.948 0.020 0.970 0.954 0.016 0.969 

0.1 0.956 0.067 0.980 0.953 0.041 0.971 0.951 0.032 0.961 

0.15 0.959 0.102 0.980 0.953 0.062 0.968 0.950 0.048 0.967 

0.2 0.952 0.142 0.981 0.951 0.085 0.973 0.950 0.066 0.966 

0.3 0.950 0.237 0.981 0.956 0.136 0.980 0.951 0.105 0.968 

0.4 0.960 0.368 0.984 0.954 0.198 0.979 0.947 0.151 0.976 

0.5 0.957 0.570 0.990 0.946 0.278 0.978 0.957 0.207 0.978 

 

Sample size 

  40   50  

C. V. CV  Length CV  CV  Length CV  

3 samples       

0.05 0.946 0.013 0.967 0.945 0.012 0.961 

0.1 0.950 0.027 0.969 0.947 0.024 0.959 

0.15 0.947 0.041 0.965 0.949 0.036 0.962 

0.2 0.948 0.056 0.971 0.947 0.049 0.963 

0.3 0.947 0.089 0.960 0.950 0.078 0.965 

0.4 0.951 0.127 0.964 0.945 0.111 0.969 

0.5 0.952 0.172 0.975 0.948 0.150 0.968 
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Sample size 

  10   20   30  

C. V. CV  Length CV  CV  Length CV  CV  Length CV  

5 samples          

0.05 0.947 0.026 0.987 0.947 0.016 0.977 0.950 0.012 0.972 

0.1 0.941 0.052 0.988 0.936 0.032 0.980 0.948 0.025 0.977 

0.15 0.940 0.080 0.990 0.951 0.048 0.983 0.949 0.038 0.975 

0.2 0.944 0.111 0.989 0.951 0.066 0.983 0.946 0.051 0.977 

0.3 0.935 0.187 0.993 0.946 0.106 0.984 0.944 0.081 0.975 

0.4 0.945 0.294 0.993 0.945 0.155 0.985 0.944 0.117 0.975 

0.5 0.945 0.471 0.995 0.944 0.218 0.986 0.941 0.161 0.986 

 

Sample size 

  40   50  

C. V. CV  Length CV  CV  Length CV  

5 samples       

0.05 0.951 0.010 0.970 0.950 0.009 0.968 

0.1 0.948 0.021 0.969 0.949 0.019 0.967 

0.15 0.944 0.032 0.967 0.952 0.028 0.971 

0.2 0.948 0.043 0.972 0.950 0.038 0.970 

0.3 0.948 0.069 0.976 0.953 0.061 0.976 

0.4 0.943 0.098 0.975 0.945 0.086 0.978 

0.5 0.948 0.134 0.978 0.950 0.117 0.979 

 Two-sided 95% confidence interval. 
 One-sided 95% confidence interval. 

Table II gives the empirical coverage probabilities for lognormal 
samples. When the sample size is 10 or 20, the intervals are rather 
conservative. For larger sample sizes, the coverage probabilites fall close 
to the nominal 95%. Understandably, this is so, since formula (2) works 
well under large samples only. 
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Table II. Empirical coverage probabilities and average length of 
approximate 95% two-sided confidence intervals and empirical coverage 
probabilities of 95% lower one-sided confidence intervals based on 5000 
lognormal samples 

Sample size 

  10   20   30  

C. V. CV  Length CV  CV  Length CV  CV  Length CV  

3 samples          

0.05 0.997 0.405 1.000 0.963 0.027 0.993 0.964 0.018 0.986 

0.1 0.997 0.534 1.000 0.959 0.055 0.993 0.958 0.037 0.983 

0.15 0.998 0.647 1.000 0.964 0.084 0.993 0.960 0.057 0.984 

0.2 0.999 0.755 1.000 0.966 0.114 0.993 0.967 0.077 0.984 

0.3 0.998 0.987 1.000 0.967 0.182 0.991 0.957 0.123 0.980 

0.4 1.000 1.281 1.000 0.973 0.261 0.989 0.954 0.177 0.971 

0.5 1.000 1.651 1.000 0.977 0.365 0.981 0.961 0.245 0.961 

 

Sample size 

  40   50  

C. V. CV  Length CV  CV  Length CV  

3 samples       

0.05 0.956 0.015 0.980 0.956 0.013 0.976 

0.1 0.954 0.032 0.980 0.954 0.026 0.974 

0.15 0.956 0.046 0.976 0.959 0.039 0.975 

0.2 0.954 0.062 0.974 0.953 0.053 0.971 

0.3 0.956 0.099 0.973 0.948 0.085 0.966 

0.4 0.954 0.142 0.962 0.948 0.123 0.955 

0.5 0.948 0.197 0.956 0.934 0.169 0.941 
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Sample size 

  10   20   30  

C. V. CV  Length CV  CV  Length CV  CV  Length CV  

5 samples          

0.05 1.000 0.781 1.000 0.965 0.022 0.998 0.960 0.015 0.989 

0.1 1.000 0.838 1.000 0.966 0.045 0.997 0.961 0.029 0.989 

0.15 1.000 0.909 1.000 0.962 0.068 0.997 0.961 0.045 0.989 

0.2 1.000 0.985 1.000 0.962 0.093 0.996 0.960 0.061 0.988 

0.3 1.000 1.176 1.000 0.973 0.148 0.994 0.961 0.096 0.983 

0.4 1.000 1.409 1.000 0.973 0.215 0.991 0.957 0.140 0.978 

0.5 1.000 1.716 1.000 0.978 0.302 0.992 0.968 0.194 0.969 

 

Sample size 

  40   50  

C. V. CV  Length CV  CV  Length CV  

5 samples       

0.05 0.961 0.012 0.985 0.954 0.010 0.982 

0.1 0.959 0.023 0.983 0.955 0.020 0.977 

0.15 0.961 0.036 0.982 0.956 0.031 0.981 

0.2 0.958 0.048 0.983 0.949 0.042 0.974 

0.3 0.946 0.077 0.968 0.947 0.066 0.970 

0.4 0.945 0.111 0.965 0.942 0.096 0.957 

0.5 0.948 0.154 0.953 0.947 0.133 0.947 

 Two-sided 95% confidence interval. 
 One-sided 95% confidence interval. 
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Table III presents simulation results on empirical type-I errors for 
testing 0ψ=ψ  against 0ψ=/ψ  (two-sided) and testing 0ψ=ψ  against 

0ψ<ψ  (one-sided). Overall, the type-I errors for these tests are close to 

the nominal level when the sample size is sufficiently large. 

Table III. Empirical estimates of type-I error at 5% significance level 
(two-tailed test or left tailed test) based on 5000 samples 

Sample size 

 10 20 30 

C. V. 2-sided 1-sided 2-sided 1-sided 2-sided 1-sided 

3 samples       

0.05 0.004 0.038 0.036 0.062 0.037 0.06 

0.1 0.003 0.034 0.037 0.062 0.038 0.063 

0.15 0.002 0.036 0.035 0.064 0.039 0.064 

0.2 0.002 0.027 0.033 0.06 0.038 0.064 

0.3 0 0.023 0.029 0.052 0.038 0.059 

0.4 0 0.016 0.024 0.043 0.038 0.053 

0.5 0 0.006 0.022 0.04 0.041 0.056 

 

Sample size 

 40 50 

C. V. 2-sided 1-sided 2-sided 1-sided 

3 samples     

0.05 0.037 0.057 0.041 0.06 

0.1 0.045 0.068 0.044 0.063 

0.15 0.043 0.064 0.04 0.06 

0.2 0.045 0.062 0.045 0.063 

0.3 0.048 0.066 0.047 0.062 

0.4 0.048 0.055 0.052 0.059 

0.5 0.06 0.064 0.06 0.063 
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Sample size 

 10 20 30 

C. V. 2-sided 1-sided 2-sided 1-sided 2-sided 1-sided 

5 samples       

0.05 0 0.02 0.036 0.07 0.039 0.07 

0.1 0 0.014 0.041 0.071 0.036 0.061 

0.15 0 0.014 0.038 0.074 0.041 0.069 

0.2 0 0.013 0.04 0.065 0.041 0.073 

0.3 0 0.009 0.03 0.058 0.034 0.063 

0.4 0 0.002 0.027 0.051 0.038 0.058 

0.5 0 0 0.019 0.038 0.036 0.053 

 

Sample size 

 40 50 

C. V. 2-sided 1-sided 2-sided 1-sided 

5 samples     

0.05 0.045 0.07 0.04 0.061 

0.1 0.043 0.068 0.044 0.064 

0.15 0.042 0.068 0.05 0.074 

0.2 0.041 0.064 0.049 0.07 

0.3 0.041 0.058 0.048 0.066 

0.4 0.043 0.063 0.05 0.06 

0.5 0.047 0.057 0.062 0.064 

5. An Example 

The Hong Kong Medical Technology Association has been conducting 
the Quality Assurance Programme for medical laboratories in Hong Kong 
since 1989 for the purpose of promoting the quality and the standards of 
medical laboratory technology. In the specialty of hematology and 
serology, one normal and one abnormal blood samples were sent to 
participants for measurements of Hb, RBC, MCV, Het, WBC, and 
Platelet every year. Fung and Tsang [5] performed tests for equality of 
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CV on the measurements of these six items for both the 1995 and 1996 
data using the likelihood ratio test and the modified Miller asymptotic 
test. Both tests, which assumes normal samples, show that the CV for Hb 
in 1995 is significantly different from that of 1996. However, these tests 
do not concern us here. Using the Kolmogorov Smirnov test, the two Hb 
samples can well be treated as coming from lognormal populations at the 
5% level as the following SPSS printouts show. 

Kolmogorov-Smirnov Test 

  Hb1995 

N  65 

Mean 2.6836 
Normal Parametersa.b 

Std. Deviation .01757 

 Absolute 0.88 

Most Extreme Differences Positive 0.82 

 Negative – .088 

Kolmogorov-Smirnov Z  .707 

Asymp. Sig. (2-tailed)  .700 

Kolmogorov-Smirnov Test (outlier included) 

  Hb1996 

N  73 

Mean 2.6924 
Normal Parametersa.b 

Std. Deviation .02546 

 Absolute .214 

Most Extreme Differences Positive .214 

 Negative – .150 

Kolmogorov-Smirnov Z  1.828 

Asymp. Sig. (2-tailed)  .002 
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Kolmogorov-Smirnov Test (outlier excluded) 

  Hb1996 

N  72 

Mean 2.6902 
Normal Parametersa.b 

Std. Deviation .01730 

 Absolute .155 

Most Extreme Differences Positive .109 

 Negative – .155 

Kolmogorov-Smirnov Z  1.318 

Asymp. Sig. (2-tailed)  .062 

Hence a test for the equality of their CVs should be based on 
nonparametric tests instead of parametric ones. The only nonparametric 
test Fung and Tsang [5] used is the squared ranks test which indicates 
that their CVs are not significantly different. Therefore, we are 
interested in making inference about their common CV. 

The 1995 data give the following summary measures : mean 14.64, 
variance 0.0665, sample size 65, and CV 0.0176. For the 1996 data with 
the outlier removed, the corresponding summary measures are 14.74, 
0.0640, 72, and 0.0172. As Feltz and Miller [4] presented, one reasonable 
estimate for ψ  based on all k samples is 

,ˆ

1 i
ii

i
x
s

N
n∑

=

=
µ
σ

k
 

where N is the total sample size. Using this formula, ψ  is estimated to 

be 0.0174. Based on 50,000 simulations, the proposed (approximate) 95% 
two-sided generalized confidence interval is found to be (0.0157 , 0.0202). 
The corresponding upper one-sided interval is (0, 0.0196). 
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6. Conclusion 

Many data from clinical sciences come from lognormal instead of 
normal populations. In this paper, we propose an approach for making 
inferences about the common coefficients of variation based on several 
independent lognormal samples. This approach uses the concept of 
generalized variables. A simulation study indicates that the coverage 
probabilities of the proposed confidence interval and the type-I error of 
the proposed test are generally satisfactory. The success of the simulation 
approach depends largely on the accuracy of the approximations to the 

distribution of U, Z, and ,XS  the exact distributions of which are 

intractable when samples come from non-normal populations. The 
generalized variable concept in conjunction with the simulation approach 
might prove to be invaluable in similar situations involving other non-
normal distributions such as the two-parameter exponential, gamma and 
uniform. 
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